Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
ACS Appl Mater Interfaces ; 14(2): 2501-2509, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1605760

ABSTRACT

Rapid serology platforms are essential in disease pandemics for a variety of applications, including epidemiological surveillance, contact tracing, vaccination monitoring, and primary diagnosis in resource-limited areas. Laboratory-based enzyme-linked immunosorbent assay (ELISA) platforms are inherently multistep processes that require trained personnel and are of relatively limited throughput. As an alternative, agglutination-based systems have been developed; however, they rely on donor red blood cells and are not yet available for high-throughput screening. Column agglutination tests are a mainstay of pretransfusion blood typing and can be performed at a range of scales, ranging from manual through to fully automated testing. Here, we describe a column agglutination test using colored microbeads coated with recombinant SARS-CoV-2 spike protein that agglutinates when incubated with serum samples collected from patients recently infected with SARS-CoV-2. After confirming specific agglutination, we optimized centrifugal force and time to distinguish samples from uninfected vs SARS-CoV-2-infected individuals and then showed concordant results against ELISA for 22 clinical samples, and also a set of serial bleeds from one donor at days 6-10 postinfection. Our study demonstrates the use of a simple, scalable, and rapid diagnostic platform that can be tailored to detect antibodies raised against SARS-CoV-2 and can be easily integrated with established laboratory frameworks worldwide.


Subject(s)
Agglutination Tests/methods , Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Diagnostic Tests, Routine/methods , Recombinant Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Early Diagnosis , Humans , Sensitivity and Specificity
2.
ACS Sens ; 5(8): 2596-2603, 2020 08 28.
Article in English | MEDLINE | ID: covidwho-650062

ABSTRACT

High-throughput and rapid serology assays to detect the antibody response specific to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in human blood samples are urgently required to improve our understanding of the effects of COVID-19 across the world. Short-term applications include rapid case identification and contact tracing to limit viral spread, while population screening to determine the extent of viral infection across communities is a longer-term need. Assays developed to address these needs should match the ASSURED criteria. We have identified agglutination tests based on the commonly employed blood typing methods as a viable option. These blood typing tests are employed in hospitals worldwide, are high-throughput, fast (10-30 min), and automated in most cases. Herein, we describe the application of agglutination assays to SARS-CoV-2 serology testing by combining column agglutination testing with peptide-antibody bioconjugates, which facilitate red cell cross-linking only in the presence of plasma containing antibodies against SARS-CoV-2. This simple, rapid, and easily scalable approach has immediate application in SARS-CoV-2 serological testing and is a useful platform for assay development beyond the COVID-19 pandemic.


Subject(s)
Agglutination Tests/methods , Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Antibodies, Viral/blood , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Pandemics , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL